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ABSTRACT

A method is developed to form beam spectral estimates
from a set of signals sampled from hydrophone outputs of an
acoustic array. The signals must be frequency band limited
over an interval [W,,W,+W] and sampled over a time interval
T. A savings of (W,/W) + 1 in data storage and computation
time is realized over conventional beamforming analysis
methods employing sampling rates equal to iwice the highest
frequency in the signal band. Any set of delays t; may be
utilized and the beamformirg error determined as long as
t; <T/2. The computed beam spectra can be made arbitrarily
close to the actual beam spectra by choosing (a) a large num-
ber of points to be analyzed, (b) small input signal amplitudes
at the end points of the time interval T, and (c) small actual
spectrum amplitudes near f=W, and f=W,+W.

This procedure would be particularly applicable to future
sonar systems employing digital circuitry to beamform and
spectrum analyze on-line.

PROBLEM STATUS

This is an interim report on the problem; work is
continuing.
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DIGITAL BANDPASS BEAMFORMING WITH THE -
DISCRETE FOURIER TRANSFORM -

Lo

INTRODUCTION

The advent of the Fast Fourier Transform (FFT) has greatly facilitated computer calcu-
lations of power spectra. On-line spectrum analysis of signals by digital computer is expected
to play an important role in future sonar systems. The methcd presented here allows a beam-
formed spectrum to be computed from a set of appropriately sampled bandpass signals repre-
senting hydrophone ocutpuis~ of an arroy. If the ratio of the center frequency or carrier to the
sigznal band about the carrier is much greater than one, a conventional beamforming analysis
utilizing sampling of the data at twice the highest frequency in the signal band not only wastes
time and money in providing many spectral estimates at frequencies of no interest, but requires
inordinately large ainounts of storage to obtain a desired resolution. These high sampling rates
are normally used when imprementing a digital beamZorming analysis in order to obtain small,
discrete iime intervals for delaying purposes. A bandpass sampling method of beamforming
would be more efficient, would yvield beiter resotution for the same amount of input data
samples, and would result in good coverage of the useful handwidth utilizing all the available
spectral estimates. Such a scheme is employed here with the following results:

(1) The beamformed spectzum is expressed as a single equation utilizing the conven-
tional Discrete Fourier Transforn (DFT).

(b) The sampling rates are considerably lower than those normaily employed for digital
hear.forming. Therefore, a substantial saving of data storage and computation time results.

(¢) Sampling the signal at these low rates does not. constrain the delays (; to be integral
multiples of the sampling interval and. in fact, any delay is realizable with this method an< an
associated beamforming error may %e calculated as long, as t; < T/2 where T is the signal

length to be analyzed.

(d) ‘The use of first-order sampling* affords a very simple and practical means of ob-
taining the discrete data samples for analysis.

DIGITAL BANDPASS SPECTRUM ANALYSIS
In this section we review the concept of bandpass sampling and develop a method for

estimating the power spectrum of a bandpass function g(t). The results of this section are
then used in the next section to develop and construct the beam-spectrum equation.

*A sampling is defined as first-order if the sample points are equispaced. See, tor example, Ref. 1.

1



2 DAVID T. DEIHL

HESSHSNH

Consider a function g(¢) which is band limited to the frequency interval [W, ,W,+W].
The function g(t) may be reconstructed exactly (2) from an infinite set of first-order samplw
taken at a rate 2W only if W, = CW, where C = 1,2,3,... . Although higher order sampling
permits reconstruction of the original signal for less s2vere constraints on W, and W, we will
only consider the case for which

W, =CW,C=1,23,.. (1)

since first-order sampling is more amenable to current operational digitizing systems. The
complexity of higher order sampling schemes makes first-order sampling a very simple and
practical means of obtaining the discrete data samples. In a practical situation for which W,
is not an integer multiple of the signal bandwidth, W can be easily chosen slightly larger than
the actual signal bandwidth so that Eq. (1) is satisfied.

Let samples of g(t) be taken at a rate 2W and let W, = CW, where C is a positive integer.
The conventional Nyquist rate for sampling a function which is band limited to the interval
[0,W,+W] is equal to 2(W,+W). Thus, by sampling at a rate 2W (‘‘submultiple” or *“‘band-
pass’’ sampling), a factor of (W, /W)+1 = C+1 savings in data storage is realized. We define
the reconstructicn gp, (¢) of g(t) as in (2) by

1 o0
Er(t =2—H7 ;Oo g(;v) {2(W +W) sinc [2(W0+W) (t—-z-'}ﬁ)] -

. , __n
2W, smc[2V:° (t 2W)]} (2)

where

sin 71X
X

sincX =

It can be shown that g (¢) is equal to g(t), exactly, for all ¢.

In addition to being band limited, let g(¢) be time limited to the interval [0,T]. There
are now 2WT = N samples obtained from sampling g(¢) in the interval [0,T]. The reconstruc-
tion, Eq. 2, for g(¢) remains the same, except that the limits on the sum are changed to
n =0, and n = (N—1). Even though a function cannot strictly be both band limited and time
limited, these conditions may be met approximately (3). From this point we will consider
only those g(t) whose values are negligible outside some time interval of length T and whose
spectrum values are also negligible outside the frequency interval [W,,W,+W]. The function
&g (¢) is now approximately equal to g(t) cver the interval T. The closeness of the approxi-
mation depends on the smallness of the spectrum of g(t) outside the interval [W, ,W,+W]
and the smallness of g(t) outside T (see App. A).
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Define the Fourier transform pair to be by
o0 -
V(e(t)] =G(f) = j g(t)e~27iftdt -
(3)
sHeM =s0 = | Giemitar

where ' denotes the transform operator and f is measured in Hertz. Two transforms which
will be used in the development are

1 <X
X.m<2
yisinc(Xt)] =
JY

0, ifi >—
ift 2

and
Ylg(t+a)) = e27ifayg(1)]) = e27IEG(f).

We now proceed to derive an expression for the transform of the bandpass sampled
time function g(¢) in terms of the Discrete Fourier Transform (DFT). First, we apply the

operator Y to g5 () to obtain

N-1
1 n L
—_— _— —2wifn|2W W +W
i ) (g (2“,) ¢ ).Woéiﬂ( 0 .
Grh=Ylgrt)) = n=0
L 0. elsewhere

Equation (4) expresses the transform of g (¢) as a function of continuous frequency f
However, the computer operates on a discrete set of data, i.e., on the values g(n/2W) for
n=0,1,..N-1. 'The DFT resulting from the operation consists of N output values at the

frequencies

|3
b

N |a

fr =

where k is an integer satisfying the relation W, T < [k| < (W, +W)T.
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Substitution of [y for fin Eq. (1) yields
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!

N1
T < (TN o , _ Y
Kf Z {g \A_V_) e 2,‘1}”:/;\) Wo Sifpi S Wo+W
n=9 ;

A
kY

~

GR (fk )=

\__.._ﬂ(.._‘_./
o
~—

~ 0, clsewhere -

where f;, = k/T.

The sufficiency conditions that enable the function G g (f, ) to be made arbitrarily cloze
to the “correct” transform G(f), evaluated at [ = f;., are shown in Ap». A. These conditions
show the amount of data, the time domain weighting, and the degree of bandpass filtering
that is necessary to meet a desired degree of accuracy in G (f,. ).

The form of Eq. (5) !looks much like the DFT. However, the DFT is usually computed
for £2=0,1,2,...,N-1. The bounds on the index k in Eq. (5) are

W < ihy S (W, +0)T
Since 2WT = N and W = CW, we have

CN C+1IV
Y gy < (O (6
2 2

o<

Therefore, adjustiments must be made in crder to properly evaluate the spectrum of g(t) by
means of the conventional DFT.

Since C is an integer, we can write
C=2m-—1{
where m is a positive integer and £ = O or 1 as C is even or odd.
If we introduce a new index k' such that
(CN/2)+ k' =mN - (N 2)+ k', k' =0,1,.., (N/2)-1
k= , (7

~(CN/2)+ k' =—mN + (AN/2) + k', k' ==N/2,..,~2,~1

then
<|k|\—-——-2—-—- for 0 <|kE'|<N/2

Substituting Eq. (7) into Eq. (5) and noting that e~ 27k 'n/N s periodic in k’ with period N,
and that e~ Tin% = ¢+7in® e have
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N—-1
= Z (g (EN—T) eninQe-zmnk'/N) ,k'=0,1,. ,N-1
n=0

N
Grfp) = (8)
0, all other &'
where
CN K .
o7 +?, k= 0:1,2,...,(N/2)—1\
fk =
_(C+2)N K, .
L -—E,}—' +—T~ , R =N/2,.,N-1
In order to reduce Eq. (8) to the form of the DFT we must consider the two cases for C
« en or odd. When £ = 0 (C is even) Eq. (8) reduces to
N-1
1 Zz 14 (ﬂ) e~2mink' /N p'=01,.,N-1
N N ’ ? bl (9)
Gr{fy)= n=0
-0, all other %’
where
+ [}
mzx; L 0,1,...,(1\//2)-1]|
fr = r .
— ~N+k' ,
mN-NYk o Ng2, N1 )
T
This is simply the equation for the DFT of g(nT/N), so that
G(fy) =~ Ggr{fy) = DFTy’ [g (%;Z)} ,k'=0,1,.. ,N-1. (10)

‘Thus for C an ever. integer, the “corract” Fourier transform of the bandpass function
g(t) sampled over the interval T may be approximated by means of the DFT of the N band-

pass samples of g(t). Figure 1 shows graphically a spectrum in the three stages of processing:

(a) the original spectrum G(f) for C an even integer; (b) the spectrum of G(f) after sampling
at a rate 2W; and (c) the spectrum obtained from the DFT of the: N sampled values of g(t).

GITITSSYTIND
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When U =1 (C is odd) we find* -
o
- N-1 -
T Z / nT e ™
— —— ) eFinpg=2mink /N k'=01....N—
N \g N ) , 1. ,N—1 a
GR (f", ) = n=0
0, all other /.’ J
= DFT,' [(~1)*g(nT/N)]. (11)
G(t)
) w 2W 3w 4w SW 6w
fo}
G sampLeD . .
w Fig. 1-The idcal spectrum G(f) for an even value of
f:_) C is illustrated in (a). After sampling at a rate 2W,
5 the spectrum becomes as shown in {b). Finally, the
2 . spectrum obtained from the Discrete Fourier Trans-
w e i s Z A ""'“--. f H
9| e, // ’% N s form (DFT) of the N sampled values of g(t) is shown
g ‘///:1 l‘/A/ A |72 YZ__ .y, in (¢). These three sketches show the amplitude spec-
0 woooaw oaw ) W Swo ew trum in three stages of processing.

(>

v N/2 N IN/2 2N INS2 N

Thus for C odd, the data may be spectrum analyzed using the DFT if the sign of every
other data point is first changed. If the percentage bandwidth of the signal is small enough,
it may be advantageous to increase W slightly to make C even. Then the (—1)" term can be
avoided.

*The factor ™M = (—1)" is equal to e27itW here t = nT/N and W = N/2T, corresponding in the frequency
domain to a shift of W:i.e.,

Y[e2MtWe ()] = G(~W).
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The Inverse Discrete Fourier Transform (IDFT) of Gg (f,) for C even yields the orrgmal
time series g(nT/N). The function &g (t) may then be formed by using the appropriate m
sampling interpolation formula. The IDFT of Gr(f,) for C odd yields the time series =
(=1)* g(nT/N). The function &g (t) may be formed by first changing the sign of every other
data value and then applying the sampling interpolation formulia.

The power density spectrum S(f,,) is formed from the Fourier transform of g(t) by
letting

1
S(fy) == Gr (i Gk (fy)

where { denotes the complex conjugate.

Thus, in this section we found that the Fourier transform of a function g(t), appropri-
ately time- and frequency-band limited, can be computed from a finite set of bandpass
sampled data of g(t) by means of the DFT, and at a computer storage savings proportional
to the ratio of the highest frequency in the signal band to the bandwidth of the signal. If
the number of data samples N is a power of two, the FFT may be employed to calculate the
DFT.

It now remains to incorporate an arbitrary delay into g(¢; for the purpose of beam-
forming. This will be done in the next section.

DIGITAL BANDPASS BEAMFORMING

The previous section presented and developed some properties of bandpass functions
relating to the DFT. Once these methods are at hand, it is a fairly simple matter to incorpo-
rate a time delay £, into the equations and develop an expression for the transform of the
delayed function g(t—t,). After doing this, the expression will be generalized to include a
set of signals, each with its own delay, representing the outputs of hydrophones in an array
to be beamformed and spectrum analyzed.

Basically, a beam is formed from signals which are delayed by predetermined values and
then summed. These delays can be introdu~ed in either the time domain or the transform
(frequency) domain of the signal because of the relation

g(t=t,) = v~ 1{e"2TiitoG(f))

where

G(f) = vig(®)]. (12)
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Introduction of a time delay ¢, in Eq. (4) results in

G3TA1SSYTOND

1 N nT E
d EW_ e 2mifty Z (g (F) e-2mfn/2w> , Wo <Ifi< W0+ur L
Gh ()= Vigr(t=t,)] = n=0 >
L 0, elsewhere .
(13)
where G% (f) is the transform of the delayed reconstruction function.
Now let f = f;, = k/T, as in the previous section. Then,
(N-1) "
_}\7.‘;. —2mitok/T Z ( ( \ ~2mk/~\ %1!<|kl<((‘ 2I)N
G%(fy) = n=0 ]’ .14

L 0, =allotherk

It is clear from Eq. (14) that we are forming the transform G‘f; {f ) ol the delayed recon
struction function from sampled values of g(t) for 0 < t < T. However, the nature of the
sampling process is such that g(nT/N) appears to be cyclic in n with period N, and Gg (f, "} is
cyclic in k' (see previous section) with period N. A delay of t, will therefore cause the
function g(t), 0 <t < T, to be delayed into the new function (see Fig. 2)

gt-t,), t, <t<T A
gty = > fort,>0 |

8Tt +), C<t<y, ]

or > . (18]
git+it]), 0t <(T-it 1) ]

a(t) = > fort, <0

g(E=T+it, 1), (T-it,1) St < T

J

Therefore, those values of the delayed recenstruction function g (¢,~t, ) computed for the
interval [0,t,] for ¢, > 0, or for the interval [T—i¢,|,T] for f, <0, may not be accurate
since this part of the function has been “folded over” or “cycled” from the other end of
g(t). However, if the quantity ¢, is much less than T, any error in the delayed function
&r(t,—t,) on the interval {0,t,|] or [T—|t,],T] will detract negligibly from the correctness
of the function on the interval [0,T] (see App. B). In fact, for most practical acoustic
underwater array problems, t, will be on the order of milliseconds and T will be several
seconds, so that (¢,/T) = 10~ 2. An error equaiion is developed in App. B which includes
the effects from “cyclic” delaying. It is shown in App. C that in at least one specific case.
the cyclic delaying error is sma:l for delays close to T/2.

To reduce Eq. (14) to the form of the DFT, we proceed as in the previous section.
Since C is an integer we can writc
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Fig. 2—A delay of {5 will cause  he time-limited function g(¢t)
[sketch (a)] to be declayed into the new function gd(t). for
to > 0 [sketch (b)] or for t, < O [sketch (c)].

-
o
v
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Aprmtl e -

RELATIVE AMPLITUDE ———t=
O

L£ 3]

C=2m-1{
where m is a positive integer and € = 0 or 1 as C is even or odd. Introduce a new index k'

such that

mN ___92_2N_+ kK, k' =012,...(N/2)1

-mN +%—N +k', kK ==N/2,.~2~1 J

We substitute &’ for k in Eq. (14) and then specialize to the two cases of even or odd C.

@
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For 2 = 0 (C even) we find

—Zm'tQ

GITAT5SYIONA

m N+’ T N
f_;_] o T (mN*& )DFTk’ [g (HF)] » k'=0,1,...,(N/2)-1
d - J T2mity 1N +k'
G (fr) = —;-e 72 (T(m+1)N+ )DFTk' P(%I)] ,k'=N/2,.N-1 [
\0’ all other k&’
7 e

Thus for C even, the transform of the delayed function g(t—t,) is approximated by com-
puting the DFT of the set of values g(nT/N) and then multiplying the k'th value by the ap-
propriate exponential phase factor.

For =1 (C odd) we have

_?.ﬂito ' N
—_— N - (N/2 k
f%e T (MR e, [(—1)%(—'}?)] . k'=0,. (N/2);1
Glify=< T T2 (N - (N/2) + k') nT
r(fr) = ~e 7 DFT," [(—1)'= g('—N—)] , k'=N/2,.,N-1
L 0, all other &'

(17)

Thus for C odd, the transform of the delayed function &(t—t,) is approximated by computing
the DFT of the set of values (~1)* g(nT/N) and multiplying the k'th value by the appropriate
exponential phase factor.

Equation (16) or (17) allows us to approximate the Fourier transform of a delayed
time function g(t—t, ) by operating on bandpass samples of g(t) taken from t=0to t =T
The only new restriction is that the delay ¢, should be small compared to the length of
signal T to be analyzed.

In order to generalize the equations for the beamforming case, consider an array of p
hydrophones, in which the rth hydrophone receives a signal g"(nT/N ,r=1,2,....p. Let the
delay to be introduced into the rth received signal be #, and let (t,),,, /T be much less than
unity. For C an even integer the transform of the formed beam (computed from all receiver
output signals 1 to p, each having been san'pled at a rate 2W from 0 to T') is approximated
by
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(2, ("2nitr(mN+k.) o "E\
|
r=1 §
GBeam = i ! .
04 1 2, "———27¥tr('(m+1)N+k')D A o (nT\TL L e
N L e FTp' [€(5 )| b+ ¥ =N/2..N-1
r=1 { ’
0, allotherk’ J
(18)

This is the final result of the analysis. The beam spectrum is readily calculated by means
of Eq. 18 which utilizes the DFT and the bandpass sampled data from the individual hydro-
phones in the array. Equation (18) could be implemented with a digital computer employ-
ing the Fast Fourier Transform to compute the DFT of the input signals. To save even more
computation time, only those Fourier estimates at frequencies f, ' of interest need be multi-
plied by the exponential phase factors and summed. A wide choice of analysis ‘“‘windows”’ is
available (3), and incorporation of such a function in Eq. (18) would serve the dual purpose
of reducing spectral leakage and providing the necessary time-limiting approximations on
8(t).

SUMMARY

Signals which are band limited to the frequency interval {W,,W,+W] can be sampled
fromt =0to t = T at a rute 2W and digitally processed according to Eq. (18) to obtain 2
beamformed spectrum of the inputs. A savings of (W,/W)+1 in data slorage or an improved
frequency resolution is realized over the conventional digital beamforming methods because
of bandpass sampling. The computed spectrum can be made arbitrarily close to the actual
spectrum by choosing a large number of points analyzed, small input signal amplitudes near
t = 0 and t = T, and small spectrum values near f = W, and f = W,+W. The delays t; are not
constrained to be integral multiples of the sampling interval At. Any set of delays ¢; may
be used and a beamforming error term calculated as long as t; <T/2. This method could
be used for digital on-line analysis of narrow-band signals constituting outputs of a receiv-
ing array in a sonar system, or it might be used as a time- and space-saving data processing
technique employing a con7entional digital computer.
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APPENDIX A &
BANDPASS SPECTRUM ERROR ;

There are five sources of error which contribute to the total error in the beamformed
amplitude spectrum Ggw“ (fy)- Only one of these errors originates from the delay properties
of the processing. The rest are present in the Discrete Fourier Transform (DFT) regardless
of any delay introduced. The five errors are

a. spectrum aliasing error, nresent because of G(f) is not strictly bandlimited to W,

b. truncation error from the time domain caused by sampling g(t) only over the
interval T,

c. spectral leakage through sidelobes of the analyzing window,*
d. error from spectrum curvature, and

e. atime domain cycling error caused by the cyclic delaying properties of the beam-
forming process.

In this appendix we discuss the first four errors, which contribute to the total error in
the bandpass spectrum computed via the DFT. (In App. B we will discuss the error in the
beamformed bandpass spectrum.) The errors from leakage and curvature are discussed
qualitatively; the aliasing and truncation errors will then be accounted for quantitatively by
combining their effects ir .o a single error formula.

The degree of speciral leakage that can be tolerated is largely dependent on the char-
acteristic of the spectra to be analyzed. If the spectra are relatively flat in the band of inter-
est, leakage of energy through sidelobes of the analyzing spectral window would not be of
concern. But for spectra with a large dynamic range of amplitudes, or for one with sharp
separated spikes, leakage can result in false estimates of power. If leakage is a concern, the
Hanning window is an excellent smoothing window which may be applied either as a multi-
plication of the time data or as a convolution of the complex Fourier amplitude spectrum (3).
Although the resolution is reduced. the pesk level of the Hanning spectral window at the
first sidelobe is more than 30 dB down from the peak level at the main lobe.

A restriction on the curvature of the spectrum is made by requiring that the energy in
the ideal spectrum be almost constant over the analyzing window width. Here ““analyzing

*The analyzing window may be thougnt of as a spectral weighting function of unity gain which is convolved
with the ideal spectrum G(f) to obtain the estimates of spectral amplitude.

13
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window width” refers to the width of the main lobe of the spectral analyzing window. This
requirement assures that an un »iased estimate of the true spectrum will be obtained Zﬁef 2
p. 8). A user must chcose an analysis time T long enough to assure enough resolutlomor

minimal window wid.h. =

Now, to obtain the quantitative estimate of the error from aliasing and truncation, we
follow the procedure developed by Moseley. Moseley calculated these errors in the DFT of a
time function g(t) sampled over the interval T. The spectrum of g(t) in his development is
low pass and is bandlimited to a frequency W (Ref. 3, App. B). We will use the results of
his analysis to obtain a measure of the aliasing error and then to obtain a measure of the
truncation eiror for cur bandpass spectrum. In order to apply his results to the bandpass
case we proceed to split the spectrum into two parts. This enables us to compute the error
in the DFT caused by aliasing. Let

Gif)=G'(H+G"() (AL)
where
G(f), WoSFsWy+W
G'(f) =
=~ (0, elsewhere
and
G(f), “Wo-W<<f<-W,
G"(f) =
= 0, elsewhere
Recall that
G(f), Wy <Ifi < (Wy+W)
G(f) =

=~ 0, elsewhere

We proceed to find the aliasing error in G'(f) and G"(f) and then add these together to ob-
tain the error in G(f).

Consider a frequency translation of G'(f) to G'(f'), where f'=f — Wy — (W/2)*. Then
G'(f), O<If'I<W/2

G'(f') = : (A2
~0, W/2<|f'|<eo

*This frequency shift merely amounts to a complex phase multiplication of the time data.
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Assume that |G'(f')I approaches zero at least as rapidly as

ﬁ; for W/2<|f'|<oo (A3)

where o >> 1.0 and € is some small constant. Denoting the aliasing error by -y, , Moseley
calculates this error in G'(f') to be given by

lei2** 1§ ()

1< (SF)

(A4)

where SF is the sampling frequency (2W for our case), and ¢(«) is the Riemann zeta function
defined by

f@)= ) e
¢=1

Similarly, after translating G"(f) to G"(f"), where f" = f+Wy+(W/2), we find that the aliasing
error in G”{(f") is also less than ;. This time we require that {G"(f")] approach zero at least
as rapidly as

ch_“ for W/2<|f"| <o,

For our bandpass spectrum, the restrictions on G'(f') and G"(f") require that G(f) approach
zero at least as rapidly as

e €
|ift = wo—(w/2)| @

for ifi outside [Wq,Wg+W].

Then these errors may be added to obtain an approximate estimate of the aliasing error in
the bandpass spectrum:

bp:
IrPi< SF)

(A5)

This error is twice the error in the low-pass specirum bandlimited to W because for the band-
pass case we have two frequency cutoff regions, while for the low-pass case there is only
one. While there are only C aliased bands from frequencies less than W, and an infinite
number of aliased bands from frequencies above W,+W, the fali>ff of the out-of-band energy
is usually fast enough so that doubling the low-pass aliasing error is a good appreximation

to the aliasing bandpass error. In any case the estimated bandpass aliasing error is a valid
upper bound of the actual aliasing error.

To obtain an estimate of the truncation error, we require that g(t) approach zero at
least as rapidly as V/Itlﬁ for t outside the sampled interval T, where $>>1.0 and v is some

G3ITITSSYTOND
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small constant. Mosely calculates the truncation error, denoted here by Y9, to be

given by -
lv|28
"ol < gyr-ay (48

where A = 1/SF is the interval between samples.
The total aliasing and truncation error in the DFT of the bandpass function g(t) is then,

le|2%+2¢ () . lv| 28
(SF)« (B-1)(T-Ay¥~1"

IGg ()~ G(NI < (A7)

The aliasing error may be reduced by choosing a larger sampling frequency SF, although in
the bandpass cace it must be an integral multiple of 2W. The aliasing error could be further
reduced if the data were filtered with a filter of steeper slope such that the signal in the band-
width of interest was not affected. In this case the quantity o would be larger. The trunca-
tion error may be reduced by choosing a longer analysis time 7.
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APPENDIX B -
BEAMFORMED SPECTRUM ERROR o
e o}

<y

An estimate of the aliasing and truncation error present in the DFT of a bandpass func-

g(t) was determined in App. A. Here we examine the error in the beamformed spectrum
G ().

Consider a set of band-limited functions g™(t) for r = 1,2,...,p, all of which are identical
after time shifting by t,, where we let t; = 0 be the reference channel chosen so that the
remaining f, are positive. Then,

p
Z g (t—t.) = pgl(t). (B1)

r=1

If the set GT(f) are the Fourier transforms of the g"(t), we have

p
Y [en2miftrGr ()] = pG(f). (B2)
r=1

We now sample each g7(t) in the interval [~T/2,T/2] at a rate 2W = N/T = 1/A and beam-
form via the DFT using the method described in the main body of this report. Let G (f) be
the set of spectra computed by the DFT’s of the data before the beamforming is carried out.
Then,

p P |
Gheam(f)= Y ["2MiftGR(] and GPRM(F)= ) [em2MITtGI(f)]
r=1 r=1

are the beam spectrum computed via the DFT and the ideal beam spectrum, respectively.
Using Eq. (B2) and defining

p
> (e 2miMt-GR(f)] =pGE(f), (B3)
r=1

the difference between G}’f“m (f) and GPeam™ (f) is pG}Nf) ~ pGL(f). The factors of p are in-
dicative of the signal gain that we expect from the beamforming process.

Moseley derives an equation for the truncation and aliasing error present in the DFT
of a sumpled low-pass time function g, (t). His error equation is expressed as a difference

17
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between the spectrum G (f) computed via the DFT and the ideal continuous spectrum
G(f), where

o0

and
(N/2)-1
Gr(f) = E [g(An)e~2mifAn]
n=-N/2

with A = 1/SF = T/N, and SF is the sampling frequency.

A brief explanation of his method foliows. Ey sampli* ~ g{t) with an infinite Dirac
comb function, and taking the continuous transform, he obtains for if| << 1/(24), the true

transform G(f) plus an infinite number of aliased spectral terms. Then he takes into account

time truncation by subtracting samples of g(An) for n = N/2 0 o0 and obtains a series of

error terms caused by truncation. Thus he obtains a measixre of the aliasing and truncation
error bhetween G (f) and G(f).

When we apply our beamforming procedure to this difference, we obtain
p

f .
) 1e~2mf'r{<z;;<f)—cf<m} = GR™ () = GP¥™ () = pGR ()~ pG1 (/).

Thus the exponential multiplication and summing of the Moseley difference errors will give
us a measure of the error between the DFT and ideal beam spectra. Doing this, we obtain

b . L R o [or (f-2 rlee
GR m(f) — Ggbeam (f) = Z-‘ }_ e-ZTrIff,- LG (f A ; + G f + A
J

A
d
r=1 €=1

p ; :
-A Z gr(n‘3)e—2nif(nA+t,-)
r=1
n=N/2

~(N/2)-1 >

+ f g’(nA)e“sz("A”r) L . (B4)

J

EREEN)
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The right-hand side of Eq. (B4) consists of two major terms which we’li denote asy; and =
Y9 and separately consider by virtue of el
-y

IGRE2™ (f) - GPAm ()] = Iy + vol < lyy | + Iyal. (BHE.

The first term, further reduced in Eq. (B6) below, represents the contribution to the beam-
forming error cauvsed by spectrum aliasing:
Gr (f +—Q—> ) (B6)
A .

Note that, because the multiplicative phase terms are simply phase shifts not affecting the
amplitudes of the spectra, our upper bound estimate of the aiiasing error is not affected at

all by the introduction of the delays ¢,.

p

<2 | Z (| (3)

r=1 | £=1

+

As in App. A, assume that the G"(f) each approach zerc at least as rapidly as

€
lifl — Wo—(W/2)|

for ifl outside [Wq,Wo+W].

Then, except for a factor of p, the quantity v, is simply the aliasing error previously defined
in App. A and is

lel2%* 2¢ (o} (BT)

p
v I <= (SF)&

Recall that SF is equal to 2W for the bandpass case, and {(«) is the Riemann zeta function.

The second term 7, includes the effects of time domain truncation and cycling error.
Letn! =n +t_/A. Then we have

RS
A Z g(nlA - tr)e—2m’/'n1A
r=1

nl=(N/2)+(t,/A)

I72| =

~(N/2)~1+t,/A

|
+ .;. ginlA -t e 2mifn 1A )
(B8)

nl:—oo
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The multiplicative phase factors in the Y9 term manifest themselves as delays in time of-the
&7(t). Note that the limits on the inner sums have changed and we are now considering;T;:con-
tributions to the error from outside the interval [—T/2+t,,T/2+t,]. Since the t, were con-
strained to be positive, we may separate the sums over n! into the following series (an
analogous procedure applies for negative t,’s):

/o ~(N/2)-1

p -
mal=| &y E £(n Aty )em2mifn A E £ (n At Jem2mif) A

r=1

nl=N/2 nis-oo
(B9)
(N/2)~14’tr/A -(N/I2)~l+lr/A
\ 2—"
- , g’(nld—tr)e_'g”if" a4 g"(.'llA - tr)e-2m‘/n 1A
nl=N/2 nl=N/2

Interchanging sums over nl and r and vsing Eq. (B1), we arrive at

oo —(N/2)1
byl < Ap ? gl(nlA)em2rifnld o ? gl(nta)e~2mifnlA
ni=N/2 nla—co

*(N/2)—l*!,/.'3

P
+A Z E g’(nlA't,)e-zﬂif"!A
r=1

nleN/2

~(N/2)-1+t,/A
—~opifnl
- ; g’(nlA--l,)e 2rifnl A
nl==-N/2

(B10)
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The first term on the right-hand side of Eq. (B10) is p times Moseley’s truncation error: It
is less than the quantity =

pivi2f
B-1)(T-A¥1

(B11)

for g(t) < v/|tiB, where t is outside the interval [~T/2,T/2], > 1.0, and v is some small
constant (see App. A).

The second term, hereafter denoted by 'y%. is caused by the cyclic representation of
£,(t). When a delay of g‘nA) is effected, a *““cycling” takes place, resuiting in a time inter-
val where the delayed function is inexact. For example, for positive ¢, information in the
interval [T/2—t,,T/2] is “lifted” and “inserted” into the interval [=T/2-T/2+¢t.]. For smal
values of delay ¢,, this error interval is small, as is the error itself. This can be seen in Eq.
(B8) by noting that if t, = 0, no additional terms are present to contribute to 72. ift, = 4,
only one additional term contributes from each sum, etc.

In order to reduce and evaluate 'yé, note that

(N/2)1+t,/2A ~(N/2)y1+t./A
1 1A—¢ Y 1A 2
72‘<AZ E g7 (n1 A, )i + 2 lg(nta-t,)l (B12)
nleN/2 nla=-N/s2

Now let gr(t—t,) approach zero at least as rapidly as

F% for T/2< |t| <oo

where 8> 1.0, and v is some small constant. Recalling that g"(t) approaches zero for
t < --T/2, this is equivalent to letting g"(t) approach zero for t outside the interval
{--T/2.T/2—t,] for positive t,. In order to maximize the error estimate, choose t,,,
equal to the largest delay from the set t,. Then,

(N/2) =1+t max/A N/2

lyh1 < Al—;l% % (In11)76 + ? (int1y 8 (B13)

nl=N/2 nl=(N/2)+1-tymax/A
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Finally, since :E’
(N/2)y-1+tpax/b 3 =
t N\ B
1 —6 <. max (__)
? (Int) S~ \3
nl=N/2
and & , (B14)
N/2
t N t -8
1)y=B < -max (— + __r_n_azs)
2 (Intl) A \gt1TTA
nl=(N/2)+1=tmax/A )
we arrive at the expression
WIptmax ' 1 _
lypl <=0 1+ B15:
Y2 (_T_ﬁ (1+Z_fmax>ﬁ (
2 N (1/72)]

where we have used the relation NA = T. It can be seen from Eq. (B15) that the cycling errcr
may be decreased by choosing the analysis time T to be large.

The estimate of cyclic delaying error developed here is good for all practical situations
where the maximum delay ¢, .. is much less than the total length T of signal being analyzed.*
In fact the model is good for delays up to half the analysis interval (see App. C), an extreme
delay situation rarely, if ever, encountered with real arrays and signals. At ¢, ., = (7/2) + A.
the error term Iy%l becomes infinite. This is because, for this particular delay, we require
that g(t) be negligible outside the interval [~T72,0]. The function v/|¢/ has a singularity at
t = 0, however, thus preventing neglizibility of g(¢).

We may now add together the three error terms (aliasing, truncation, and cycling) to
obtain

cloa+2
IG}}Cam(f)— Gbcam(f)l <_l_71'|2 (@)

(SF)©
pw|2P PWityay 1
m a 1+ . B16
G-1(T-ay1 " (T2 1+_%_£max)ﬁ o)
N (T/2)

*Recall from the scction on Digital Bandpass Beamforming that a ratio of tmax/T on the order of 1072
was considered typical.
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Thus, the error in the beamformed spectrum is the sum of three error terms: the first two
are encountered in the bandpass spectrum anaiysis, with or without delay present, and are
the aliasing and the truncation errors; the third term includes the error from the cyclic
delays inherent in the beamfbrming process.



APPENDIX C

ILLUSTRATION OF THE METHOD

A computer program was written to illustrate the theory. A set of random numbers
was generated using a CDC Library Function Subroutine.* This set was then digital band-
pass filtered for C = W,/W = 12 and for a sampling rate SF = 4(Wy+W), i.e., twice the usual
Nyauist rate. The resulting set of numbers is taken to represent a redundant sampling of a
ccatinuous function g(t) bandlimited to the interval [W,,Wy+W]. The set can then be
separated into two related interleaving sets g(1 )(t) and g(é))(t), either set completely deter-
mining g(t) (see Flg C1). By chocsing the startmg pont for g(1 )(t) the setgu)(!) can be
“delayed” from g )(t) by odd multiples of 1/SF. For the case shown here we let the delay
ty between the vwo sets be equal to 13/SF = A/2 = (1/2W)/2.

Both sets were ‘“‘bandpass sampled’’ at a rate 2W by retaining only every 13th value
from each set, thus creating two sets of bandpass sampled daia delayed from each other by
13/SF (see Fig. C2); N was equal to 128, and Hanning weighting was used to minimize g(t)
near t=0 and t=T. Figure C3 shows a plot of the difference between the original Hanned set
values before delaying. Note the large difference values, indicating that g(l )(t) and gm)(t)
were not at all coincident before being delayed.

W al=
)
=1
[ I
E 1
?x ! 2 13 1
nzl 2 (
w 1
> 1
[ ]
< i
)
w )
« [
gl
T o(l)“)

Xz g
1 L}

Fig. C1—A set of randomly generated numbers is digitally bandpass
filtered and separated into two related interleaving sets g(l(t) and
g(z)(t) as shown here. Either set completely determines the bandpass
funct.lon g(t).

*Spectrum analysis of the sequence before filtering resulted in a flat power spectrum, indicating that the
series was random enough for our purposes.
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RELATIVE AMPLITUDE v -pm

X B0 - .s -
Pz, €2 The wet _g[(.“ ’-‘f) shown 1n Fig. C1 is delaved from Q:Jiz-’(l) by an

v

ammouant oo~ LSS Bath ses are then “bandpass sampled® at a rate

ZW by nelsimng enly every 100h vadue from each set. The resultant sets

AW

hf. C3 -.-\mpl(i‘tudc differences between the original Hanned set values
gf,l)(t) and gg")(l) before (top curve) and after (bottom curve) com-
puting the advance function gsxz)(l*lo). The differences are large before
delaying (top curve). After delaying, the two set values agree closely
(bottom curve).
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Equation (16) was programmed, for t; = —13/SF, and run on the gflz)(t) data serieLs_:.j
An IDFT of the resulting G‘}{ (fr') was computed, and the values of the ““advanced” func-
tion gkz)(ﬁ-]to |) were compared to those of gﬁlll)(t). A plot of the difference function
gﬁzll)(t)—gsqz)(tﬂtol) is shown in Fig. C3. It is seen that the two series agree closely, having
been properly delayed. The mean-square value of the “after-delay” difference function is

equal to
N

=y E D0 - 4P (t+1tgh)? = 3X1074.

n=nl=1

Using Parseval’s theorem which equates the mean-square value of a function to the sum over
all frequencies of the square of the absclute value of its Fourier spectrum, and with the
knowledge that the spectrum of the noise is approximately flat across the band, we com-
pute the mean-square error per spectral estimate to be

2¢1/N = 5X1076 = —45 dB

where the decibel numbers are referenced to the mean-square value of the criginal time

series gflll)(t). Using Eq. B16 we find that for our choice of filter, Hanning smoothing
window, and time delay, the errors from aliasing, truncation, and cyciing are predicted to

be less than, respectively, —38 dB, —65 dB, and —106 dB. This indicates, then, that in this
case almost all of the error is contributed by spectrum aliasing. There is almost no contribu-
tion to the error from the delay ty = A/2 (very small) or the truncation (the Hanning window
is very small at the end points of the interval) problem.

The same two original data sets were again ‘‘bandpass sampled’ and properly delayed,
but this time the delay was very large. We let t; = (7/2) — (5A/2). This value of ¢ is close
to half the analysis interval T/2, at which point the limiting assumptions for negligibility of
g(t) begin to break down. The computed variance per spectral estimate for this case was on
the order of

21 /N = 1073 =-22 dB.

Again using Eq. B16, we predict the errors from aliasing, truncation, and cycling to be, re-
spectively, —38 dB, —65 dB, and —20 dB. Clearly, the dominant error is from the cyclic
delay term. This computed error agrees closely with the calculated experimental error and
shows the adequacy of the analysis of App. B to handle this extreme delay case.



